Spontaneous Formation of a Diamond-Crown Structure of Re_{8} Polyselenide and a Cage Structure of Re_{3} Polytelluride

Guo-Xin Jin, ${ }^{\dagger}$ Yasuhiro Arikawa, and Kazuyuki Tatsumi*
Research Center for Materials Science and Department of Chemistry, Graduate School of Science Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8602, Japan

Received August 14, 2000

Chemistry of soluble transition metal chalcogenides represents one of the most fruitful specialties of coordination chemistry. ${ }^{1}$ Owing to the ability of calcogenide dianions (E^{2-}) and polychalcogenide dianions $\left(\mathrm{E}_{x}{ }^{2-}\right)$ to coordinate in various ways, a diverse range of soluble transition metal aggregates may be stabilized. Remarkable examples of such class are the high-nuclear binary metal sulfides, $\left[\mathrm{M}_{6} \mathrm{~S}_{17}\right]^{4-}(\mathrm{M}=\mathrm{Nb}, \mathrm{Ta}),{ }^{2}\left[\mathrm{Cu}_{6}\left(\mathrm{~S}_{4}\right)_{3} \mathrm{~S}_{5}\right]^{2-},{ }^{3}$ and $\left[\mathrm{Fe}_{18} \mathrm{~S}_{30}\right]^{10-} .{ }^{4}$ We have developed chemistry of organometallic trithio and triseleno complexes of $\mathrm{Nb}(\mathrm{V}), \mathrm{Ta}(\mathrm{V}), \mathrm{Mo}(\mathrm{V})$, and $\mathrm{W}(\mathrm{V})$, with a pentamethylcyclopentadienyl (Cp^{*}) auxiliary. ${ }^{5}$ As an outgrowth of our study on the group 5 and 6 metal complexes, we became interested in chalcogenido complexes of half-sandwich rhenium. A good number of mononuclear and dinuclear CpRe derivatives with chalcogenide and polychalcogenide ligands have been reported previously, for example, $\mathrm{Cp} * \operatorname{Re}(\mathrm{O})\left(\mathrm{E}_{4}\right)(\mathrm{E}=\mathrm{S}$, $\mathrm{Se}), \mathrm{Cp} * \operatorname{Re}\left(\mathrm{~S}_{3}\right)\left(\mathrm{S}_{4}\right), \mathrm{Cp}^{*}{ }_{2} \operatorname{Re}_{2}\left(\mu-\mathrm{E}_{4}\right)_{2},{ }^{6}\left[\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Re}_{2}\left(\mu-\mathrm{S}_{2}\right)_{2}\right] \mathrm{Cl}_{2}\left(\mathrm{Cp}^{\prime}=\right.$ $\left.\mathrm{C}_{5} \mathrm{EtMe}_{4}\right),{ }^{7}$ and $\mathrm{Cp} * \operatorname{Re}\left(\mathrm{E}_{3}\right) \mathrm{Cl}_{2} .{ }^{8}$

From the reaction of $\mathrm{Cp} * \mathrm{ReCl}_{4}$ with excess $\mathrm{Li}_{2} \mathrm{~S}_{2}$ in THF, we were able to isolate only the known dinuclear complex $\mathrm{Cp}^{*}{ }_{2} \mathrm{Re}_{2}-$ $\left(\mu-\mathrm{S}_{4}\right)_{2}(\mathbf{1})$ as black crystals in 23% yield. ${ }^{9}$ This complex was previously synthesized via desulfurization of $\mathrm{Cp} * \operatorname{Re}\left(\mathrm{~S}_{3}\right)\left(\mathrm{S}_{4}\right)$ with $\mathrm{PPh}_{3} .{ }^{6}$ Next we examined the reaction of $\mathrm{Cp} * \mathrm{ReCl}_{4}$ with $\mathrm{Li}_{2} \mathrm{Se}_{5}$ which was prepared from elemental selenium and LiBHEt_{3} in THF. A THF solution (20 mL) of $\mathrm{Li}_{2} \mathrm{Se}_{5}(0.75 \mathrm{mmol})$ and $\mathrm{Cp} * \mathrm{ReCl}_{4}(0.185 \mathrm{~g}, 0.40 \mathrm{mmol})$ in the same solvent were combined and stirred for 24 h at room temperature. The resulting black solution was filtrated and dried in vacuo, and the residue

[^0]
Scheme 1

was extracted by toluene $(10 \mathrm{~mL})$ and recrystallized from benzene/ hexane to afford 0.21 g (73% yield) of product $\mathbf{2}$ as air/moisturesensitive black prisms. ${ }^{10}$ When the analogous reaction between $\mathrm{Cp} * \mathrm{ReCl}_{4}$ and 1 equiv of $\mathrm{Li}_{2} \mathrm{Se}_{5}$ was carried out in DMF, the violet chloro/triselenido complex $\mathrm{Cp} * \operatorname{Re}\left(\mathrm{Se}_{3}\right) \mathrm{Cl}_{2}(\mathbf{3})$ was generated. ${ }^{8}$ This complex $\mathbf{3}$ was found to be converted into 2 in 56\% isolated yield, upon treatment with $1-2$ equiv of $\mathrm{Li}_{2} \mathrm{Se}_{5}$ in THF.

An X-ray crystallographic study of the black crystals of 2 established the stoichiometry $\mathrm{Cp}^{*}{ }_{8} \mathrm{Re}_{8} \mathrm{Se}_{40}{ }^{\circ} 4\left(\mathrm{C}_{6} \mathrm{H}_{6}\right),{ }^{11}$ and Figure 1 gives two views of the cluster. Compound $\mathbf{2}$ is a unique cyclic octanuclear cluster of diamond-crown shape and is the lateral dimensions of the cluster are ~ 13.9 ($\mathrm{Se} 8--\mathrm{Se} 16$) $\times 12.7$ ($\mathrm{Se} 3-$ -Se11) A. Each Re carries one Cp* ligand and one $\mathrm{Se}_{3}{ }^{2-}$ chelate, and eight such $\mathrm{Cp} * \operatorname{Re}\left(\mathrm{Se}_{3}\right)$ units are linked by $\mathrm{Se}_{2}{ }^{2-}$ groups. The cluster structure of 2 may be viewed as an ellipsoidal $[\operatorname{Re}(\mu-$ $\left.\left.\mathrm{Se}_{2}\right)\right]_{8}$ 24-membered macrocycle, to which eight diamond-shaped ReSe_{3} blades are placed inside the macrocycle and Cp* ligands coordinate at Re atoms from the outside. The oxidation state of every Re is V and its four-legged piano-stool coordination geometry makes it a 16 -electron system. Every bridging $\mathrm{Se}_{2}{ }^{2-}$ unit is bound to metal centers with a transoid configuration, where the $\mathrm{Re}-\mathrm{Se}-\mathrm{Se}-\mathrm{Re}$ tortional angles range from $101.9(1)^{\circ}$ to $125.6(1)^{\circ}$. Consequently, the Re atoms are alternatively situated upper and lower portions of the 24 -membered macrocycle, as viewed from the side. It is interesting to note that the $\mathrm{Se}-\mathrm{Re}-$ Se angles within the 24 -membered ring $\left(72.10(8)^{\circ}-75.8(1)^{\circ}\right)$ are notably smaller than the $\mathrm{Se}-\mathrm{Re}-\mathrm{Se}$ angles of the ReSe_{3} blades (78.45(8) $\left.{ }^{\circ}-80.9(1)^{\circ}\right)$, and that the $\mathrm{Re}-\mathrm{Se}$ bond distances in the macrocycle (av $2.525 \AA$) are longer than those of the ReSe_{3} blades (av $2.434 \AA$), while the $\mathrm{Se}-\mathrm{Se}$ distances are not very different (24-membered ring, av $2.368 \AA$; blades, av $2.352 \AA$). The final Fourier map shows no strong residual peaks in the interior of the $\left[\operatorname{Re}\left(\mu-\mathrm{Se}_{2}\right)\right]_{8}$ macrocycle. The absence of Li cations in the macrocyclic structure of 2 contrasts to $\left[\mathrm{Fe}_{18} \mathrm{~S}_{30}\right]^{10-}$ where two Na cations are encapsulated within the toroidal cavity, and

[^1]

Figure 1. Two views of $\left[\mathrm{Cp} * \operatorname{Re}\left(\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{2}\right)\right]_{8}$ (2). Upper: planar projection, where $\mathrm{C} \mathrm{p}^{*}$ groups are omitted for clarity. Lower: side view showing thickness of the molecule.
suggests that the unusual diamond-crown structure of $\mathbf{2}$ is formed spontaneously without a "template" effect of Li cations. Another feature of note is that the cluster is quite soluble in benzene and toluene despite the high nuclearity. We sense that eight Cp^{*} ligands at the periphery of the $\left[\operatorname{Re}\left(\mu-\mathrm{Se}_{2}\right)\right]_{8}$ macrocycle promote the solubility. This property is also pertinent to the high solubility of a tricubane cluster $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Mo}_{2} \mathrm{Fe}_{2} \mathrm{~S}_{4}\right]_{3}\left(\mu-\mathrm{S}_{4}\right)_{3}$ in toluene. ${ }^{12}$

The reaction of $\mathrm{Cp} * \mathrm{ReCl}_{4}$ with 2 equiv of $\mathrm{Li}_{2} \mathrm{Te}_{5}$ was also carried out. A deep red THF solution of $\mathrm{Li}_{2} \mathrm{Te}_{5}$, generated from $\mathrm{Te}(5.0 \mathrm{mmol})$ and $\mathrm{LiBHEt}_{3}(2.0 \mathrm{mmol})$, was treated with $\mathrm{Cp} * \mathrm{ReCl}_{4}$ for 3 h at room temperature. After a workup similar to the one used for the isolation of $\mathbf{2}$, hexane $(30 \mathrm{~mL})$ was slowly layered onto a benzene solution (20 mL) of the crude product, and it was kept standing at $-20^{\circ} \mathrm{C}$. Over a 3 -week period, air/ moisture-sensitive black prismatic crystals were grown to afford 4 in 27% yield. ${ }^{13}$

The crystals were subjected to X-ray analysis, and the molecular structure is shown in Figure 2. ${ }^{14}$ Compound $\mathbf{4}$ is an unusual trinuclear cage cluster, consisting of two different types of Cp*Re units. Two Re atoms, Re2 and Re3 with a short metal-metal

[^2]

Figure 2. Structure of $\mathrm{Cp}_{3} \mathrm{Re}_{3} \mathrm{Te}_{8}$ (4). Selected bond distances (\AA): Re1-Te1 2.763(1), Re1-Te2 2.682(1), Re1-Te4 2.732(1), Re1-Te6 2.684(1), Re2-Te6 2.719(1), Re2-Te7 2.577(1), Re2-Te8 2.605(1), Re3-Te2 2.720(1), Re3-Te7 2.578(1), Re3-Te8 2.605(1).
distance of 2.6641 (8) \AA, are doubly bridged by Te7 and Te8 and are further coordinated by Te 6 and Te 2 , respectively. On the other hand, $\operatorname{Re} 1$ is bound to four Te atoms. The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} consists of two singlets of Cp * protons in 1:2 ratio, indicating that the structure of $\mathbf{4}$ in crystals is retained in solution. The five Te atoms ($\mathrm{Te} 2-\mathrm{Te} 3-\mathrm{Te} 4-\mathrm{Te} 5-\mathrm{Te} 6$) are approximately planar, and the maximum deviation from the least-squared plane occurs at $\mathrm{Te} 4(0.234 \AA)$. The $\mathrm{Te}-\mathrm{Te}$ distances are grouped into three categories: $\mathrm{Te} 1-\mathrm{Te} 7, \mathrm{Te} 2-\mathrm{Te} 3$, $\mathrm{Te} 5-\mathrm{Te} 6$ (2.778(2)$2.812(2) \AA$); $\mathrm{Te} 4-\mathrm{Te} 8, \mathrm{Te} 3-\mathrm{Te} 4, \mathrm{Te} 4-\mathrm{Te} 5$ (2.971(2)-2.995(2) $\AA)$; $\mathrm{Te} 1-\mathrm{Te} 2, \mathrm{Te} 1-\mathrm{Te} 6$ (3.326(2), $3.325(2) \AA$). The distances of the first category are comparable to the known $\mathrm{Te}-\mathrm{Te}$ singlebond lengths in various polytellurides coordinated to metal centers, ${ }^{1{ }^{1}}$ while those of the third category are somewhat too long to invoke strong bonding interactions. The $\mathrm{Te}-\mathrm{Te}$ distances of the second category are enigmatic, like those found in the intriguing structures of $\mathrm{Cs}_{2} \mathrm{Te}_{5},{ }^{15} \mathrm{Te}_{6}\left(\mathrm{AsF}_{6}\right)_{4},{ }^{16}$ and $\left(\mathrm{PPh}_{4}\right)_{3}{ }^{-}$ [NbTe_{10}]. ${ }^{17}$ Since the Re1-Te4 distance of $2.732 \AA$ is at the longest end of the $\mathrm{Re}-\mathrm{Te}$ bonds in $\mathbf{4}, \mathrm{Te} 4$ cannot be regarded as a terminal Te^{2-} ligand, and there must be partial bonding interactions between Te 4 and the three neighboring Te atoms.

Oxidation state of III is electronically feasible for Re2 and Re3, in 4, and they are relevant to the 18 -electron Re (III) centers of $\mathrm{Cp}{ }_{2} \operatorname{Re}_{2}\left(\mu-\mathrm{E}_{4}\right)_{2}$ with a $\mathrm{Re}-\mathrm{Re}$ double bond. If we make an extreme assumption that the $\mathrm{Te}-\mathrm{Te}$ pairs of the second category, viz., $\mathrm{Te} 4-\mathrm{Te} 8, \mathrm{Te} 3-\mathrm{Te} 4$, and $\mathrm{Te} 4-\mathrm{Te} 5$, are nonbonding, it would create two Te^{2-} ligands and three $\mathrm{Te}_{2}{ }^{2-}$ ligands, which gives rise to Re1(VII), Re2(III), and Re3(III). The Re1(VII) center is an electron-deficient 14-electron system, and four electrons have to be provided from the telluride ligands, to make it 18 -electron. This can be done by formation of three $2 / 3$-bonds between the $\mathrm{Te}-\mathrm{Te}$ pairs of the second category, and the oxidation state of Re1 would become III. We think that the actual oxidation states of Re are between $\operatorname{Re} 1(V I I)-\operatorname{Re} 2(I I I)-\operatorname{Re} 3$ (III) with the $2 \mathrm{Te}^{2-}$ $+3 \mathrm{Te}_{2}{ }^{2-}$ ligand set and $\operatorname{Re} 1(\mathrm{III})-\mathrm{Re} 2(\mathrm{III})-\mathrm{Re} 3(\mathrm{III})$ with the $\mathrm{Te}_{6}{ }^{4-}+\mathrm{Te}_{2}{ }^{2-}$ ligand set.

Acknowledgment. We thank Professor Roger E. Cramer for careful inspection of the X-ray analysis.

Supporting Information Available: X-ray crystallographic files (CIF) for (2) $\cdot 4\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and (4) $\cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
JA003007P

[^3]
[^0]: * Corresponding author. E-mail: i45100a@nucc.cc.nagoya-u.ac.jp.
 ${ }^{\dagger}$ On leave from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
 (1) (a) Draganjac, M.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 742-757. (b) Roof, L. C.; Kolis, J. W. Chem. Rev. 1993, 93, 10371080. (c) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, $223-$ 266. (d) Herberhold, M.; Jin, G.-X.; Müller, A.; Penk, M. Z. Naturforsch. B. 1991, 46, 25-32. (e) Wachter, J. Angew. Chem., Int. Ed. Engl. 1989, 28 , 1613-1626. (f) Tatsumi, K.; Kawaguchi, H.; Inoue, K.; Tani, K.; Cramer, R. E. Inorg. Chem. 1993, 32, 4317-4323.
 (2) Sola, J.; Do, Y.; Berg, J. M.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 7784-7786.
 (3) (a) Henkel, G.; Betz, P.: Krebs, B. J. Chem. Soc., Chem. Commun. 1984, 314-315. (b) Müller, A.; Römer, M.; Bögge, H.; Krickemeyer, E.; Bergmann, D. J. Chem. Soc., Chem. Commun. 1984, 348-349.
 (4) You, J.-F.; Snyder, B. S.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 6589-6591.
 (5) (a) Tatsumi, K.; Inoue, Y.; Nakamura, A.; Cramer, R. E.; VanDoorne, W.; Gilje, J. W. J. Am. Chem. Soc. 1989, 111, 782-783. (b) Tatsumi, K.; Inoue, Y.; Kawaguchi, H.; Kohsaka, M.; Nakamura, A.; Cramer, R. E.; VanDoorne, W.; Taogoshi, G. J.; Richmann, P. N. Organometallics 1993, 12, 352-364. (c) Tatsumi, K.; Kawaguchi, H.; Tani, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 591-593. (d) Kawaguchi, H.; Yamada, K.; Lang, J.-P.; Tatsumi, K. J. Am. Chem. Soc. 1997, 119, 10346-10358. (e) Kawaguchi, H.; Tatsumi, K. J. Chem. Soc., Chem. Commun. 2000, 1299-1300.
 (6) (a) Herberhold, M.; Jin, G.-X.; Milius, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 85-87. (b) Herberhold, M.; Jin, G.-X.; Milius, W. J. Organomet. Chem. 1993, 459, 257-263.
 (7) Rakowski DuBois, M.; Jagirdar, B. R.; Dietz, S.; Noll, B. C. Organometallics 1997, 16, 294-296.
 (8) Herberhold, M.; Jin, G.-X.; Milius, W. Z. Anorg. Allg. Chem. 1994, 620, 299-303.
 (9) (a) All reactions and manipulations were performed under Ar, using dry solvents. (b) Complex 1 was characterized by X-ray crystallography. ${ }^{\text {ba }}$

[^1]: (10) For $\left[\mathrm{Cp} * \operatorname{Re}\left(\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{2}\right)\right]_{8}(\mathbf{2}):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.96\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.60\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 98.75\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right) ;$ IR (KBr pellet) 2956, 2898, $1371 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{120} \mathrm{Re}_{8} \mathrm{Se}_{40}: \mathrm{C}, 16.77$; H, 2.11. Found: C, 16.01; H, 2.13.
 (11) Diffraction data were collected on a Rigaku Mercury CCD system equipped with an ultraX-18 X-ray generator and an MSC d*TREK software package. An empirical absorption correction was made with the 4th3D +4 th2D method of d*TREK. Crystal data for (2) $\cdot 4\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$: monoclinic, $P 2_{1} / c$ (No. 14), $a=18.1206(6) \AA, b=33.9535(3) \AA, c=24.0449(4) \AA, \beta=99.833-$ (1) ${ }^{\circ}, V=14576.5(6) \AA^{3}, Z=4, D_{\mathrm{c}}=2.753 \mathrm{~g} / \mathrm{cm}^{3}$. From 33450 total unique reflections, the structure was solved with 18996 observed data $\left(2 \theta_{\max }=55.0^{\circ}\right.$, with $I>3.00 \sigma(I)$) and 797 variables: $R=0.086, R w=0.091$. A disorder was observed in the 24-membered macrocycle. Six Re atoms are disordered over two positions in the occupancy ratio of $80 / 20$, each set of which is separated by $0.40-0.53 \AA$, and only the major arrangement is shown in Figure 1.

[^2]: (12) Kawaguchi, H.; Yamada, K.; Ohnishi, S.; Tatsumi, K J. Am. Chem. Soc. 1997, 119, 10871-10872.
 (13) For $\mathrm{Cp}^{*}{ }_{3} \mathrm{Re}_{3} \mathrm{Te}_{8}(4):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.15\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 1.94$ (s, $15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$); IR (KBr pellet) 2975, 2890, $1374 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{4} \mathrm{Re}_{3} \mathrm{Te}_{8}$: C, 18.15; H, 2.28. Found: C, 17.66; H, 2.42.
 (14) Diffraction data were collected on a Rigaku RASA-7 Quantum system equipped with an ADSC CCD detector and an MSC d*TREK software package. An empirical absorption correction was made with the 4th3D+4th2D method of d*TREK. Crystal data for (4) $\cdot \mathrm{C}_{6} \mathrm{H}_{6}$: monoclinic, $P 2_{1}$ (No. 4), a $=12.407(3) \AA, b=15.238(4) \AA, c=12.403(1) \AA, \beta=107.085(1)^{\circ}, V=$ $2241.2(6) \AA^{3}, Z=2, D_{\mathrm{c}}=3.057 \mathrm{~g} / \mathrm{cm}^{3}$. From 5226 total unique reflections, the structure was solved with 4721 observed data $\left(2 \theta_{\max }=55.0^{\circ}\right.$, with $I>$ $3.00 \sigma(I)$) and 244 variables: $R=0.034, R w=0.043$.

[^3]: (15) Böttcher, P.; Kretschmann, U. Z. Anorg. Allg. Chem. 1982, 491, 3946.
 (16) Burns, R. C.; Gillespie, R. J.; Luk, W.-C.; Slim, D. R. Inorg. Chem. 1979, 18, 3086-3094.
 (17) Flomer, W. A.; Kolis, J. W. J. Am. Chem. Soc. 1988, 110, 36823683.

